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Abstract 

The aim of this paper is to minimize a constrained integral in the form of differential 

equations with constraints.For this purpose, we have learned many methods of obtaining 

functions' extremum in n  and functions' extremal in calculus of variations. Then, we 

consider optimal control theory and look at it as a classical development of Euler–

Lagrange theory. In such development, we are dealing with acceptable functions that are 

less well-behaved compared to normal functions. All of these cases reach us to 

Pontryagin's maximum principle (P.M.P).  
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1. Introduction 

1-1. Minimum of single variable function  

Theorem: Assume that function of 𝑓 𝑥  is defined at interval of 𝐼 from real number. Find 

points of 𝐼 that in these points, function of 𝑓 𝑥  has minimum value of its own.  

Necessary and sufficient condition for a I being minimum point of 𝑓 𝑥 , is that for any 

value ofa I ,    f a f x  is being established for only x a . 

Example: Find function relative minimum and relative maximum of 𝑓 𝑥 = 𝑥3 + 7𝑥2 −
5𝑥using first derivative test.  

Solution:  

1

3
and (-5) are critical points of 𝑓 function. Therefore, we will have following results in 

according to previous theorem.  

Relative maximum:  𝑓 −5 = 75  

Relative minimum:  𝑓  
1

3
 = −

23

27
 

1-2. Minimum of multivariable function 

Theorem: assume that function of  , ,..., nf x x x1 2 is defined at region of 𝐾 from
n . Find 

a point at region of𝐾, in which function of    , ,..., nf x f x x x 1 2  finds minimum value 

of its own. 

http://www.ijesm.co.in/
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 ISSN: 2347-6532Impact Factor: 6.660  

 

 

8 Vol. 7 Issue 7, July2018 

 

 

Example: By assuming the function of ( , ) 1f x y x y  2 4
, find minimum point of 𝑓, if 

available. 

Solution:  

f
x

x

f
y

y


 




  


3

2 0

4 0

 

The only solution for this system of equations equals (0,0). Therefore,  0,0 1f   is only 

possible minimum value of 𝑓function. On the other hand, 

( , ) 1 (0,0) 1f x y x y f    2 4
 

Subsequently, function of 𝑓 has minimum value of  0,0 1f   at the point of (0,0). 

Note: 

If function of ( , ,..., )nf x x x1 2 is defined at the region of 𝐾from
n , Taylor series of this 

function, at the point of ( ,..., )na a a 1 , will be as follows  

( ) ( ) ( ) ( ) ( ) (1)T Tf a h f a h gradf a h H a h O


      
2

3

2
 

Where: 

( ) ( ) ( ) ( )
. .

( ) .

.
.( ) ( )

.
.

.
.

( ) ( ) ( )
. .

( )

n

n n n n
n

f
a f a f a f a

x
x x x x x x

f
a

x

gradf a H a

f a f a f a
f

a x x x x x x
x

 
               
     
   
  
  
  
     
  
         

2 2 2

1

1 1 1 2 1

2

2 2 2

1 2

 

We name this Matrix of ( )H a  as Hessian matrix of ( )f a  function. 

Theorem: we assume that ( )f x  has defined at open region of 𝐾 from 
nR  and is well-

defined enough, so that equation (1) is established. Therefore, only condition for ( )f x  

being local minimum at the point of a K , is that for every h: 

, Tgradf h Hh 0 0 

Where, gradient and Hessian matrices has been calculated.  
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2. Main Text 

In general, minimizing problem of one integral with differential constraints, is as follows: 

Equation of state:  𝑥1 = 𝑓𝑖 𝑥, 𝑢   𝑖 = 1,2,… , 𝑛 

First state:    ( )x t x 0

0
  in definite time of t0  

Final state (goal):  ( )x t x 1

1
  in time of t1     

A cost equation:  ( , )
t

t
J f x u dt 

1

0
0  

And a series of acceptable controls of ( )u t  (means that at the bounded region of u, 

gradually continues and limited) calculation of followings are desirable:  

Calculations of optimal control of 
*( )u t  and its correspondent path of 

*( )x t  that guide 

system from x 0
to x 1

, so that, in this order 𝐽 will be minimized.  

2-1. Pontryagin's maximum principle 

Without violating the generalities of problem, we consider that 𝑛 equals 2. 

Therefore, wewill have following control system: 

( , , ) ( , , )x f x x u x f x x u  
1 1 1 2 2 2 1 2  

We want to guide the system from ( , )x x1 2

0 0 , at the time of t t 0, to ( , )x x1 1

1 2 , to the 

unknown time of t1, that is gradually continues and limited, using acceptable control 

functions of ( )u t (a single-variable control function belonging to controls' series of  U 

which is a closed interval on real number axis) 

So that, ( , , )
t

t
J f x x u dt 

1

1 2
0

0  is minimized, also. 

Classical theory proposition is to investigate the behavior of the numerical function of 

Hamiltonian,  

( , , ) ( , , ) ( , , )H f x x u f x x u f x x u    1 2 1 1 1 2 2 2 1 20 0  

Where, values of i are applied for thefollowing equations: 

, , ,i

i

H
i

x



  


 12 (1)0  
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Where, x 0  is the solution for differential equation of ( , , )x f x x u
1 20 0  and satisfy first 

condition of ( )x t 0 0 0. 

For this case, consider the following theorem: 

Theorem 2.1.Assume that 
*( )u t  is an acceptable control function and its correspondent 

path is * * *( , )x x x 1 2 which guide system from x 0 , at the time of t t 0 , to x 1, at the 

unknown time of t1. 

For the purpose of *u  and 
*x  being optimal (which means that they minimize 𝐽) it is 

necessary for Non-zero vector of ( , , )T    0 1 2  to be applied in the equation 1 and, 

also it is necessary for following numerical function of:  

( , , ) ( , ) ( , ) ( , )H x u f x u f x u f x u   1 1 2 20 0  

to be available. So that: 

a) For every ;H t t t 0 1, it reaches to its maximum value toward u when 
*( )u u t . 

b) 
* * *( , , )H x u 0 and when

*( )u u t , equation (1) solution is  
*( )t at time of 

t t 1  and  0 0   

Also, it can be shown that,  

* * *( ( ), ( ), ( ))H t x t u t Constant 

And,  

( )t 0 Constant  

Consequently, for every point on optimal path, we have: H 0and ( )t 0 0. 

Example: Investigate following simple one-dimensional problem of, 

x x u  
1 1  

From x a1 , at the time of t 0 to x b1 , at unknown time of t1, so that 
t

y u dt 
1 21

2 0
 is 

minimized.  

Solution: 

We have, 
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( ) ( )

( )

x t x a x

x t b x

  

 

0 00

1 1

 

( , , ) , ( , , ) , ( , , )f x x u u f x x u x u f x x u   0 02

1 2 1 1 2 1 2 1 2

1
-

2
 

For a moment, we assume that no constraints are applied on values that ucan possess.  

We write Hamilton function for variables of , 0 1 in same state, 

1( )
u

H x u    
2

1
2

0  

where, 

,
H H

x x
  

 
    

 
 

0

0

1 1

1

 

 0 Constant  

This case will always be the same, because 𝐻 will never be function of cost variable of x 0 . 

 

Therefore, c will only have one solution for every non-zero constant of 𝑐. Provided that 

requirement of theorem (1.2) is fulfilled, which is being non-negative value for  0 , 

therefore, we can choose any value we want for  0 . Therefore,   10  will be chosen in 

this problem and any other application of theorem (1.2). 

Now, we can solve equations in the same state.  

  10  

A is a constant number.  

By looking to its maximization as a function of u, we are now testing 𝐻. 

There are no constraints for 𝑢, therefore, the derivate of 𝐻 with respect to 𝑢 is as follows: 

( )t

t t

u
H Ae x u

H
u Ae u Ae

u

    


     



2

1
2

0

 

Therefore, for tu Ae 1 , 𝐻 becomes extremum as a function of u. 

Now, because of 
H

u


  



2

2
1 0 

for tu Ae 1 , 𝐻will become extremum.  

Therefore, we have ( ) tu t Ae 1 . Now, we will find correspondent path of 𝑢, that is 𝑥. 

In other words, we find correspondentsolutionfor x 1. 

t tx x Ae x x Ae      
1 1 1 1  

After solving, we would have following first-order linear differential equations.  
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t tx Be Ae 1

1

2
 

Now, we would apply boundary conditions (in order to specify A and B in better path) 

,

( )

, t t

A
x a t a B

A
x a t b Be e


    


    


1 1

1

1 1

2
1

2

0

 

In order to calculate A and B from above system of equations, we must obtain t1 ,first.  

For this purpose, t1, time of reaching to target, is obtained on the optimal path using 

condition of 
* * *( , , )H x u 0.  

Because of 𝐻 being zero in all points on the optimal path, therefore we can apply it on 

everywhere we want that is appropriate. In this case, it is better to apply it at the time of 𝑡 

on optimal path. Therefore by substituting general solution of , ,x u1 1 for H 0, we would 

have: 

( )t t t t t

t
t t

A
A e Ae Be e Ae

A e
A e ABe A e

AB

     

    

 

2 2

2 2
2 2 2 2

1

2 2

1

2 2

0

0

0

0

 

Now, we test two special states; 

A) ,b a 2 1 

( , ),( ),

( , ),( ), ln

a b B t

a b A t

A e

AB or

B e t

   

  

   


 


     

1

1

1 2 1 1

1 2 1 2

1

2

2 2

0

0

0 0

 (That is impossible for t 1 0) 

In this case; 

* t tu Ae e 2    Optimal control 

* tx e1    Optimal path 

Total cost is as follows: 

ln ln
*

ln
ln

ln

)

)

) ( ( ) )

( )

t

t t

J u dt e dt

e dt e

e e

 

 

   

  

 



2 2
2 2

2
2 2 2

4

1 1
( 4

2 2

1
2 2(

2

1 1 1 1
2( 2 4
2 2 2 2

1
2 2 3

2

0 0

0
0

0

 

 

B) ,a b 2 1 
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lnt

t

B e t

AB or

A e


     


 


  




1

1

1

1 1

2 2

2

0 0

0

0

   (That is impossible for t 1 0) 

In this case; 

*u 0    Optimal control 

* tx e  1

1 2    Optimal path 

Total cost   J 0 

Conclusion 

This research guides us to Pontryagin's maximum principle that is used for solving 

problems with constraints or restraints existing on control or with state variables and also, 

dealing with restraints of inequality. Other applications of this principle are related to 

optimal form and description of a problem at two separated points with limited condition 

and when it is solved, explicit expression will be available for optimal control.  
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